Dissociative and non-dissociative adsorption dynamics of N2 on Fe(110).
نویسندگان
چکیده
We study the adsorption dynamics of N(2) on the Fe(110) surface. Classical molecular dynamics calculations are performed on top of a six-dimensional potential energy surface calculated within density functional theory. Our results show that N(2) dissociation on this surface is a highly activated process that takes place along a very narrow reaction path with an energy barrier of around 1.1 eV, which explains the measured low reactivity of this system. By incorporating energy exchange with the lattice in the dynamics, we also study the non-dissociative molecular adsorption process. From the analysis of the potential energy surface, we observe the presence of two distinct N(2) adsorption wells. Our dynamics calculations show that the relative population of these adsorption sites varies with the incident energy of the molecule and the surface temperature. We find an activation energy of around 150 meV that prevents molecular adsorption under thermal and hypothermal N(2) gas exposure of the surface. This finding is also consistent with the available experimental information.
منابع مشابه
Surface strain improves molecular adsorption but hampers dissociation for N2 on the Fe/W(110) surface.
We compare the adsorption dynamics of N(2) on the unstrained Fe(110) and on a 10% expanded Fe monolayer grown on W(110) by performing classical molecular dynamics simulations that use potential energy surfaces calculated with density functional theory. Our results allow us to understand why, experimentally, the molecular adsorption of N(2) is observed on the strained layer but not on Fe(110). S...
متن کاملNon-Dissociative Gas Adsorption with Different Chemisorption Geometries on Nanoporous Surfaces
Isotherm equation is one of the important scientific bases for adsorbent selection. There are different isotherms that do not account for an adsorbate, different chemisorption geometries on the nanoporous surface. It is interesting to introduce a general isotherm, which considers different chemisorption geometries of an adsorbate on nanoporous surfaces. In this study, an isotherm for non-dissoci...
متن کاملApplication of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems.
The fundamental understanding of molecule-surface reactions is of great importance to heterogeneous catalysis, motivating many theoretical and experimental studies. Even though much attention has been dedicated to the dissociative chemisorption of N2 on tungsten surfaces, none of the existing theoretical models has been able to quantitatively reproduce experimental reaction probabilities for th...
متن کاملDissociative adsorption of N2 on W(110): Theoretical study of the dependence on the incidence angle
The dissociative adsorption of N2 on W(110) is studied using classical dynamics on a six-dimensional potential energy surface obtained from density functional theory calculations. Two distinct channels are identified in the dissociation process: a direct one and an indirect one. It is shown that the direct channel is inhibited for low energy molecules (Ei < 400 meV) and low incidence angles. Th...
متن کاملComment on "role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces".
We quantitatively evaluate the contribution of electron-hole pair excitations to the reactive dynamics of H2 on Cu(110) and N2 on W(110), including the six dimensionality of the process in the entire calculation. The interaction energy between molecule and surface is represented by an ab initio six-dimensional potential energy surface. Electron friction coefficients are calculated with density ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 20 شماره
صفحات -
تاریخ انتشار 2012